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Abstract

It was found that the homogeneity of the surface drag coefficient plays an

important role in the large scale structure of turbulence in large-eddy sim-

ulation of the convective atmospheric boundary layer. Particularly when a

ground surface temperature was specified, large horizontal anisotropies oc-

curred when the drag coefficient depended upon local velocities and heat

fluxes. This was due to the formation of streamwise roll structures in the

boundary layer. In reality, these structures have been found to form when

shear is approximately balanced by buoyancy. The present cases, however,

were highly convective. The formation was caused by particularly low values

of the drag coefficient at the entrance to thermal plume structures.
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1 Introduction

The work presented in this paper is part of a joint NASA FAA program

to predict aircraft wake vortex behavior under various meteorological condi-

tions within the planetary boundary layer. As described by Hinton (1995),

the long term goal is to have safer, more efficient spacing requirements for

landing aircraft. In the short term, we plan to simulate wake vortex in-

teraction with atmospheric turbulence. As a first step, we have achieved

validated large-eddy simulation of atmospheric boundary layer turbulence in

convective conditions and have found some important results with regard to

the implementation of the surface stress boundary condition. Some of the

validation results are contained in Schowalter et al. (1995).

A number of recent publications have addressed the effects of nonhomo-

geneous surface heating in large-eddy simulation. Hechtel et al. (1990) have

studied the effects of random variations in surface heat flux on large-eddy

simulations of the convective boundary layer. They found no significant dif-

ferences between the homogeneous and nonhomogeneous cases. Shen and

Leclerc (1994), however, found that sinusoidal variations in surface heat flux

had a significant effect on the turbulence statistics when the mean wind was

weak. Shen and Leclerc (1995) further found that the most significant differ-

ences in variance structure occurred when the length scales of the sinusoidal

variations were on the order of the boundary layer depth.

Large-eddy simulation involves explicit rendering of the large-scale tur-

bulent eddies and a parameterization of the small scale eddies. Thus, the

equations are filtered such that small scale motions cannot be resolved. Be-



causethe scalesof motion closeto the ground are particularly unresolved,

calculating the stressthere is especiallyproblematic. Pastresearchers(Dear-

dorff, 1973,1974,Moeng, 1984,Mason,1989,Schmidtand Schumann,1989,

among others) have used Monin-Obukhov similarity laws to calculate the

stressat the surface.Usually, the local stressat the surfaceis relatedto the

local velocity near the surfaceby

= -CDla-Ilu, (1)

where To represents the local surface stress, CD the drag coefficient, u the

local horizontal velocity vector, and [[u[[ is the magnitude of that velocity.

The drag coefficient is dependent upon the stability characteristics of the

surface and is calculated using the similarity laws. Although the stress is

proportional to the square of the local velocity, the drag coefficient may or

may not be horizontally homogeneous.

Deardorff's (1973, 1974), Mason's (1989), and Schrnidt and Schumann's

(1989) drag coefficients depended upon local variables, but Moeng's (1984)

was based upon horizontal averages of the variables. There is little explana-

tion in any of these cases as to why the choice was made. Deardorff (1973)

did explain, however, that Monin-Obukhov similarity laws were based upon

long time or ensemble averages and that using them locally was not strictly

correct.

In this paper, we compare both approaches and find significant differ-

ences in turbulent structure. The LES model and boundary conditions are

described in section 2 while sensitivity tests of various domain sizes and res-

olutions and a discussion of those results are found in section 3. Concluding



remarksaremade in section4.

2 Model Description

We have used the TASS model (Proctor 1988; Proctor and Bowles 1992)

for the simulations. The model was originally developed for the study of

thunderstorms and microbursts, but only required a change in boundary

conditions for the simulation of the planetary boundary layer. Not allowing

precipitation in the present simulations, the equations solved were

coui

cot

HOp COuj co(uiuj)

Po Oxi + ui Oxj Ox i

+g(g - 1)_3- 2aj(_ - Ugk)_jk
10rij

Po Ox d
(2)

Op CpPOuj
Ot Cv Oxj

+ poguj_j3 (3)

Ot

COO 10(Opouj) 00(poUj)
- +

Po Oxj Po Oxj

1 COSj(O)
+

po Oxj
(4)

OQ_
Ot

1 CO(Q.pouj)
+

po Ox i

Q. O(pouj) 10Si(Qv )
--+

Po Ox j Po cOxj
(5)

Here, ui are the velocity components, p the pressure deviation from the envi-

ronment P0, flj the earth's rotation vector, g the gravitational acceleration,
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Cp the specific heat at constant pressure, C,, the specific heat at constant

volume, p0 the density of the environment, ug k the geostrophic wind vec-

tor, _-ij the subgrid turbulent stress tensor, 0 the potential temperature, Q,,

the water vapor mixing ratio, and Sj(Q) is the subgrid turbulent flux of the

scalar Q. Additionally,

H=( 0_ pC,,
0o PoCp )[1 + 0.61(Q,, - Q,,0)], (6)

where Q,,0 is the water vapor mixing ratio of the environment.

A modified Smagorinsky first order closure was used in which the eddy

viscosity depended upon stability:

c3ui

r 0 = poKMD 0 = poKM(-O-_x; +
J

c3uj 20uk¢.._
Ozi 30zk v'Jj (7)

00
Sj( O) = Pogu-ff2-_ (8)

uxj

KM : (l)_il D 0 • DO(1- Ry) (9)

where

and

l = aA kz _>aA (10)

1 = ctA[l+(aA/kz)n-1]
l+(_/,/k_)- aA > kz > kAz/2 (11)

l= kz z < Az/2 (12)

A = (2Az2Ay2Az) 1/3 (13)

KH = 3KM. (14)
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Here, R I denotes the local flux Richardson's number, a is an empirical con-

stant, and k is von Karman's constant. The purpose of Equation 11 is to

match the mixing length to the appropriate value close to the ground where

the flow is under-resolved. For the current runs, the matching parameter, n

was set to 2.5.

These equations were solved on an Arakawa C type mesh. Periodic bound-

ary conditions have been used in the horizontal directions, while a sponge

layer with three grid intervals has been added on the top of the physical

domain. At the top boundary, there existed neither heat nor mass transfer.

The lower boundary employed a no-slip condition. We have used two

methods of heat transfer from the ground to the atmosphere. In the first

case, the air temperature at a specified level close to the ground has been

given as a function of time. The heat flux was then calculated based upon

the difference between the atmospheric temperature at the first grid level

and the temperature close to the ground. This is useful for comparison

to experimental observations in which heat flux was not directly measured,

but careful temperature measurements were made. Appendix A gives the

details of this calculation. The second method was the explicit specification

of surface heat flux as a function of time.

Because the first grid point above the ground is assumed to be within the

constant stress surface layer, the drag coefficient could be calculated through

the use of Monin-Obukhov similarity laws. The result is

k
Co = }:, (15){ln(zolzo)- ' M(zoli)

where z_ is the height of the first grid level, z0 is the roughness height, IX/M
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is the stability function given by Paulson (1970), and L is the Obukhov

length. Specifics of the calculation of _I/M may be found in the Appendix.

The local velocity at height za was then used in Equation (1) to calculate

the local stress at the ground. For a horizontally varying drag coefficient,

the Obukhov length may be calculated as

where

J_U a

= ln(zolzo)- _M(zo/L)" (17)

Here, ua is the local velocity magnitude at za and (w'O')s is the local surface

heat flux. For a global drag coefficient, we would have

L -
g((w'O')s) ' (18)

and

k( o)
u. = ln(zo/zo)- CM(zo/L)' (19)

where ( ) denotes a horizontal average over the entire domain. Note that

a value of L is required in Equations (17) and (19). The value from the

previous time step was used here.

For the homogeneous drag coefficient case, the model has been compared

with observations of the Wangara Experiment, Day 33 [4]. Figure 1 (a)

shows potential temperatures as a function of local time of day for simulation

and observations. The simulation was started from the 0900 local sounding.

Figure 1 (b) shows a comparison of mean wind profiles after three hours of

simulation. In the latter case, results from Deardorff (1974) are also shown.
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Notice that a 40 x 40 x 40 grid was used for this case with 125 m horizontal

resolution and 50 m vertical resolution. The model reasonably reproduced

the experimental results.

For testing of the boundary conditions, simplified initial and environmen-

tal conditions were contrived. All cases to be discussed in section 3 used a

constant westerly geostrophic wind of 3.0 ms -1. Winds were initialized at

this geostrophic value. The sounding from 1200 local time on Day 33 of

the Wangara experiment was used for the initial temperature profile. The

inversion was located at approximately 1000 m. Random temperature per-

turbations with a maximum of -+ 1 C were introduced within the lowest three

layers of the grid at initialization to start convection. A total of seven differ-

ent runs, listed in Table 1, were made with different specifications of surface

temperature or heat fluxl horizontal domain size, and vertical resolution.

3 Results and Discussion

3.1 70 x 70 x 36 Domain

Cases ALT, ALF, and AGF, discussed here, contained 70 points in both the

x (easterly) and y (northerly) directions, while 36 points were used in the z

(vertical) direction. Each grid cell had a resolution of 50 m in all directions.

This resulted in a domain size of 3500 m x 3500 m x 1800 m with the

center of the first grid cell at 25 m above the ground. For case ALT (Local

Temperature), the temperature at z=2 m was specified and increased in time

at a rate of 0.72 C hr -1. The surface heat flux thus depended upon the local
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Figure 1: Comparison of model results with the Wangara Experiment, Day

33. (a) Potential temperature profiles at various local times of day. (b) Mean

winds at 1200 local time, after three hours of simulation. Also shown are

Deardorff's (1974) results.

8



Abbreviation Run Description
ALT

ALF

AGF

BLT

BGF

CLT

CGF

Local Drag Coefficient,
SurfaceTemperatureSpecified

Local Drag Coefficient,
SurfaceHeat Flux Specified

Global Drag Coefficient,
SurfaceHeat Flux Specified

ALT with increasedhorizontal domain size

AGF with increasedhorizontal domainsize

ALT with increasedvertical resolution
and moderatehorizontal domainsize

AGF with increasedvertical resolution
and moderatehorizontal domainsize

Table 1: Abbreviations for experimentsperformedin this study.



temperature difference between z=2 m and z=25 m. The drag coefficient was

then a function of horizontal position. Appendix A contains further details

of this calculation. For case ALF (Local Flux), the horizontally averaged

surface heat flux was extracted from the ALT run as a function of time

and was specified uniformly at the surface. The drag coefficient, however,

remained a function of horizontal position. For case AGF (Global Flux),

the same value of surface heat flux was used, but the drag coefficient was

horizontally homogeneous.

3.1.1 Variances

Figure 2 shows the velocity variance structure throughout the boundary layer

for each case mentioned above. These variances were calculated by averaging

horizontally over the entire domain every two minutes from 120 minutes to

180 minutes in simulation time. Then, these values were averaged in turn so

that the result was an average over time and space. The resolved values of

the correlations were added to an estimate of the subgrid contribution. This

estimate was calculated by the method of Mason and Thomson (1992). In

Figure 2(a), it is noticeable that the horizontal velocity variance was signifi-

cantly less when the heat flux was uniformly specified and the drag coefficient

was nonhomogeneous (ALF). The vertical velocity variance, shown in Fig-

ure 2(b), was nearly the same for each case. Figure 2(c) reveals the most

striking difference which is in the ratio between the two horizontal velocity

variances. For case ALT, in which the surface temperature was specified

and the drag coefficient was nonhomogeneous, there are large anisotropies at
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Figure 3: Velocity variances from the AMTEX experiment. Reproduced from

Lenschow et al. (1980).

the bottom and at the top of the mixed layer. For case ALF, in which the

drag coefficient was nonhomogeneous, but the surface heat flux was homoge-

neously specified, the anisotropy is qualitatively similar to case ALT, but the

magnitudes are not as large. For case AGF, in which the drag coefficient was

global and the surface heat flux was specified, the horizontal variances are

generally equal except near the top of the mixed layer, where (u'u') is larger

than (v'v'). This latter case seems more reasonable, since the two compo-

nents are expected to be the same in the mixed layer in convective conditions.

It is also expected that (u'u') would be somewhat larger in the entrainment

region, since the shear production term is large there, the geostrophic wind

being entirely westerly.

Simulated variances may be compared with those measured in the atmo-
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Symbol Date ZJL

[] 2/15 -17.9

• 2/16 -40.2

@ 2/18 -26.2

x 2/22 -32.4

0 2/24 -61.8

• 2/26 -13.2

Table 2: Symbols for figure 3.

spheric boundary layer under convective conditions ( Lenschow et al. 1980)

This data was taken by aircraft during the AMTEX experiment. Table 2

shows the dates and dimensionless inversion heights for the cases shown in

the figure. We see that the simulated variances from Figure 2 are similar to

those in Figure 3, especially for cases ALT and AGF. In terms of anisotropy,

we see that (v'v'} is quite close to (u'u'} for each individual day, with the

exception of the data from February 26. In our simulations, horizontal vari-

ances are much smaller than vertical variances in the middle of the mixed

layer. The reverse is true in the surface layer, where shear-generated turbu-

lence dominates over convective turbulence.

3.1.2 Spectra

To investigate further the anisotropic behavior in the simulations, we have

calculated various one-dimensional velocity spectra. Let us define $11 as

the power spectrum of u along the x direction. Similarly, we can define

$22 as the power spectrum of v along the y direction. If the turbulence

13
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Figure 4: Longitudinal spectra at z/Zi = 0.12 for (a) case ALT (local drag co-

efficient, surface temperature specified), (b) case ALF (local drag coefficient,

surface flux uniformly specified), and (c) case AGF (global drag coefficient,

surface flux uniformly specified).
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in the mixed layer were horizontally isotropic, these two spectra would be

identical. Figure 4 shows these spectra for the three cases discussed. Spectra

were calculated for each longitudinal grid line at the specified height, then

averaged in the other horizontal direction. That is, Sn was averaged in the

y direction and S_ was averaged in the x direction. The spectra were also

averaged in time in the same manner as the variances. We can determine

the scales of the anisotropy by observing the wavenumbers for which Sn and

$22 are different. For case ALT, the anisotropy near the surface occurs at

the smallest wavenumbers, at length scales roughly the size of the domain.

In fact, the spectral peak for $22 occurs at the domain size wavenumber. For

case ALF, in which the surface flux was uniform, but the the drag coefficient

nonhomogeneous, the anisotropy also occurs at the highest wavenumbers.

It is worth noting, however, that a spectral peak above the domain size

wavenumber does exist. Although Figure 2(c) shows some mild anisotropy

near the surface for case AGF, Figure 4 (c) reveals that this is distributed

throughout the wavenumber range.

Figure 5 shows the same spectral results near the top of the mixed layer.

The curves for cases ALT and ALF are qualitatively similar at this height,

but the spectra for case AGF show that the u variance is larger than the v

variance at this height and at low wavenumbers. As previously stated, this

is most likely due to shear production at the inversion. Thus, the evidence

from the variances and the spectra point to a large scale anomaly in the

cross-stream velocity deviation from the mean, both near the surface and

near the inversion for local evaluation of the drag coefficient.
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Figure 6: Contour plots of cross-stream velocity for case ALT after 150 min-
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(b) z/Zi = 0.86 (from -2.5 ms -1 to 3.0 ms -1 by 0.25). Negative contours are

dashed.
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Figure 7: Contour plots of vertical velocity after 150 minutes of simulation
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z/Z_ = 0.04 (from -1.8 ms -1 to 1.4 ms -1 by 0.2). Again, negative contours
are dashed.
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3.1.3 Instantaneous Velocity Contours

Contour plots of cross-stream velocity near the surface and at the inver-

sion for case ALT in Figure 6 complete the picture of this anomaly. The

cross-stream velocity contours show streaks aligned roughly in the stream-

wise direction, whose wavelength is the domain size. That is, in Figure 6(a),

the cross-stream velocity is predominantly positive between y = 0.4 km and

y = 1.6 km while it is predominantly negative elsewhere. In Figure 6(b), at

the top of the mixed layer, the behavior is opposite in that the cross-stream

velocity is predominantly negative between y = 0.4 km and y = 1.6 km and

positive elsewhere. The vertical velocity also shows some streaky behavior.

In Figure 7(a), we observe an updraft structure extending across the entire
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domain in the x direction at y __ 1.6 km (the domain is horizontally peri-

odic). Thus we seem to have streamwise roll vortices in which the dominant

thermal structure is aligned with the mean wind. Near the ground, there is a

strong positive cross-stream flow to the south of this structure and a strong

negative cross-stream flow to the north. At the top of the mixed layer, this is

reversed as the flow recirculates. This is also illustrated in Figure 8, a vector

plot for a plane perpendicular to the mean flow direction. Here, again, we

observe the dominant thermal structure at y __ 1.6 km with strong northerly

and southerly flows feeding the plume from the bottom and exiting at the

top of the mixed layer. This would account for the large anisotropies at

these vertical levels. Although there is certainly some random behavior in

these plots, they are only snapshots. The one hour averages of variance and

spectra show the persistence of this behavior.

As a comparison, horizontal cross-sections of vertical velocity for case

AGF, in which the drag coefficient was globally calculated, are shown in

Figure 9. Here, we observe no clear streamwise structure. In addition, at

z/Zi = 0.04, we observe a spoke pattern in which the thermal structures

consist of arms emanating from central nodes. There are well-defined nodes

at (x,y) points (28.75,0.2), (26.25,-1.0), (27.0,1.2),and (27.75,-0.10). It is

interesting to note that this spoke pattern of Rayleigh-B_nard type convec-

tion also observed by Schmidt and Schumann does not occur at z/Zi = 0.47.

Perhaps there is only a small part ofthe boundary layer in which this type

of convection should be expected. This topic deserves further study and is

beyond the scope of the present paper.
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Figure 9: Contour plots of vertical velocity after 150 minutes of simulation

time for case AGE. (a) z/Zi = 0.47 (from -2.0 ms -1 to 4.0 ms -1 by 0.4) (b)

z/Zi = 0.04 (from -1.6 ms -1 to 1.4 ms -1 by 0.2).



Streamwise convective roll structures in the boundary layer have been

documented (Rabin et al. 1982, Moeng and Sullivan 1994, Atlas et al. 1986).

These usually occur, however, when shear and buoyancy are both important

aspects of the flow. The present simulations have been highly convective.

Asai's (1970) stability analysis showed that statically unstable fluid with an

inflection point in the velocity profile ought to develop vortical flow structures

perpendicular to the flow direction, rather than in the streamwise direction.

It must be noted, however, that his analysis was linear and the current sim-

ulations as well as the flows in the above mentioned references were highly

non-linear. A close look at Figure 3 and Table 2 reveals possible roll behav-

ior for the February 26 case from Lenschow et al. Here, Zi/L = -13.2, the

smallest absolute value of all the cases, indicating that it was the least con-

vective. Near the ground and near the inversion, (v'v _) is consistently larger

than (u'u'), an observation indicative of streamwise rolls. For the present

simulations, ZdL = -301, indicating highly convective conditions. Stream-

wise roils would not be expected in this case. These appear to be an artifact

of the lower boundary conditions in this particular simulation.

Figure 10 shows the drag coefficient for case ALT after 150 minutes of

simulation time. The background shows the sign of the vertical velocity at

25 meters. By comparing with Figure 7(b), we observe the same vertical

velocity structure in the background image. In addition, we see that the

drag coefficient is highest primarily at the centers of the updraft regions and

is lowest just outside of these regions. This is expected because the local

velocity magnitude will be low in the centers of the updraft regions (this

22



1.6

1.2

0.8

0.4

....0.0

-0.4

-0.8

-1.2

-1.6

25.5 26.25 27.0 27.75 28.5

x (KM)

Figure 10: Contours of simulated surface drag coefficient after 150 minutes

of simulation time for case ALT as a function of horizontal position. Black

background indicates negative vertical velocity at z = 25 meters, while white

background indicates positive vertical velocity.
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leads to a smaller value of u. and, hence, a smaller absolute value of the

Obukhov length by Equation 18). Thus, there is a larger drag coefficient in

these regions in the local case. By the same principal, the drag coefficient is

expected to be relatively low at the entrance to the thermal plumes where

there are strong horizontal velocities.

It is common in problems of fluid mechanics to have streamwise streaks in

regions of high shear because the ambient strain rate tilts cross-stream vor-

ticity into the streamwise direction (see, for example Lin and Corcos' 1984

discussion of streamwise vortices in shear layers). Under convective condi-

tions, however, we hypothesize that the drag at the surface is large enough

to destroy these structures. When the drag coefficient is calculated locally,

the drag becomes low enough just outside the updraft regions to allow such

structures to exist. There they may combine with the thermal plume struc-

tures.

Figures 4 and 5 show that often the most dominant scale was the domain

size. This is true even for $11 in case AGF close to the ground. Because

the anomalies typically scaled with the domain size, we believed that an

increase in the horizontal extent of the domain may subdue the problem of

the anisotropy with a local drag coefficient.

3.2 102 × 102 × 38 Domain

In these simulations, which are labeled as "B" in table 1, we have used the

same grid resolution, but have increased the number of grid points horizon-

tally such that the domain was 5100 m x 5100 m x 1900 m. This gave a

horizontal extent of four times the boundary layer height during the aver-
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Figure 11: Horizontal anisotropy for cases BLT and BGF

aging period. Owing to the expense of running these simulations, we chose

two boundary conditions to test for this domain. Case BLT employed a local

drag coefficient and used a specified surface temperature. Case ALT showed

the most severe anisotropies, so we felt it was important to look at the effect

of domain size with the same boundary condition. We have not run a case

in which the drag coefficient was local and the surface flux was specified be-

cause the results of case ALF were qualitatively similar to ALT, though the

anisotropy was less severe. The second run for this domain was case BGF, in

which the drag coefficient was calculated globally and the flux was specified.

As in the smaller domain runs, the mean surface flux as a function of time

was extracted from case BLT and used for case BGF.

Figure 11 shows the horizontal anisotropy for cases BLT and BGF. Note

that case BLT is not as anisotropic as case ALT, but that the trend is the

same. There remain large anisotropies close to the ground and just below

the inversion. Spectra for these cases are shown in Figure 12. There is a well
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Figure 12: Longitudinal spectra for (a) case BLT at z/Zi = 0.12, (b) case

BGF at z/Zi = 0.12, (c) case BLT at z/Z, = 0.86, and (d) case BGF at
z/Zi = 0.86.
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definedspectral peak for Sll in all cases. In case BLT, however, the spectral

peak is not as well defined for $22 at z/Zi = 0.12 and not at all defined

for z/Zi = 0.86. For case BGF, however, in which the drag coefficient was

global, $22 has a defined peak at both levels. Thus, increasing the size of the

domain improved the local drag coefficient results, but did not eliminate the

problem of the anomalous streamwise rolls.

Another parameter that we believed may have had an important effect

was the vertical resolution of the grid mesh.

3.3 80 x 80 x 72 Domain

For these cases, labeled "C," the vertical grid resolution was increased to 25

meters. The first grid level was 12.5 meters above the surface. The horizontal

resolution remained at 50 meters. Thus, the horizontal domain size was 4000

meters, about 3.1 times the inversion height during the averaging period. We

believed that stress would be calculated more accurately with points closer to

the surface. Again, only cases CLT (local drag coefficient calculation, surface

temperature specified) and CGF (global drag coefficient, surface heat flux

specified) were run, owing to the computational expense.

The anisotropy for these two cases is shown in Figure 13. Here we observe

that this increased vertical resolution had a profound effect on the anomaly.

Case CLT shows stronger anisotropy close to the ground, but CGF gives

(v'v') < (u'u'} at two-thirds of the inversion height. At z/Z_ = 1, CLT again

shows a positive anisotropy, but the magnitude is much smaller than for case

BLT.

Figure 14, a contour plot of vertical velocity at z/Zi = 0.04 for case CLT,
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Figure 14: Contour plot of vertical velocity after 150 minutes of simulation

time for case CLT at z/Zi = 0.04 (from -1.4 ms -1 to 1.4 ms -1 by 0.1).
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presents a possible reason for this improved behavior. Upon comparison

with Figure 7(b) from case ALT, we note that there appears to be finer scale

structures in case CLT, even though the horizontal resolution has remained

constant. Indeed, the $31 spectra in Figure 15 show this to be the case (5'31

being the spectrum of vertical velocity in the streamwise direction). The

high wavenumber end of the spectrum contains considerably more energy at

this height for case CLT. Thus, when the vertical grid spacing was large in

case ALT, the flow close to the ground seemed to depend too strongly upon

the similarity boundary condition and important scales of eddies were not

resolved. It appears that the small scale eddies close to the ground in case

CLT prevented the longitudinal rolls from dominating the flow structure.

4 Conclusions

In conclusion, we have observed that using a locally calculated drag coeffi-

cient at the surface of a large-eddy simulation model led to unrealistically

large horizontal anisotropies in convective boundary layer turbulence, espe-

cially when coarse vertical resolution was used in combination with a small

horizontal domain extent. This anisotropy was due to large scale stream-

wise rolls which are typically found in boundary layers in which shear and

buoyancy are equally important. In the reported cases, however, buoyancy

was clearly dominant and the rolls were not expected. The rolls occurred be-

cause the drag coefficient was smallest at the entrance to large scale thermal

structures. Thus, the streamwise streak structure which is common in shear

flows was not destroyed by the stress at the ground in those regions. It is
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hypothesizedthat in theselow drag coefficientregionscloseto the thermals,

streamwisevortices are allowedto exist and combinewith the plumes.

The dominanceof thesestructureswasmost clear whenthe surfaceheat

flux was nonhomogeneousand dependedupon the local temperature differ-

encebetweensurfaceand atmosphere.It wasnoticeable,however,evenwhen

the surfaceheat flux wasuniform but the dragcoefficientwaslocally derived.

Increasingthe horizontal domainsizesuchthat it wasfour inversionheights

wide improved the results. Increasingthe vertical resolution such that the

first grid point was12.5metersabovethe surfaceasopposedto 25metersren-

deredthe anisotropy almost imperceptable.This is likely owing to the finer

scaleresolvededdieswhich appearedclose to the ground in this case. Thus,

when the vertical grid spacing was too large, important scales of turbulence

were unresolved, facilitating the formation of the more regular, longitudinal

rolls.

In closing, we note that, although temperature specification led to a larger

anomaly than did flux specification for the local drag coefficient cases, it made

very little difference if the drag coefficient was global. A test case which

could have been called AGT (global drag coefficient, surface temperature

specified) was run and the results were not significantly different from case

AGF. Thus, the temperature specification only affects the flow insofar as the

local temperature differences lead to inhomogeneous surface heat fluxes and

inhomogeneous drag coefficients.
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A Calculation of surface heat flux from sur-

face temperature

The details of calculating surface heat fluxes from surface temperatures are

described below. The method was derived from equations in Arya (1988).

First, the heat flux was defined globally or locally as

(w,o,), = -_.o. (20)

where u. is defined by (17) or (19) and

k{oo-0s} (21)
O. -- C_o{ln(z_/zs)- _H(z_/L) + *n(z,/L)}'

where we have used a value of 0.4 for k. 0_ is the potential temperature at

the first grid level above the surface in the model. As in Section 2, local

values of velocity and temperature were used for local drag coefficients and

heat fluxes, but horizontally averaged values are used here in the global case.

That is, for global calculation of 0., (0_) was used in place of 0_. In either

case,/_, is the given uniform potential temperature at z_, some level between

0 and z_. For L, the Obukhov length, (16) or (18) was used. We have used a

value of 0.89 for a0, the surface turbulent Prandtl number. For the stability

functions, we use the following relations:

'_M(z/L) = *.(z/L)= -5z/L z/L > 0 (22)

• .1 +x 2,
*M(z/L) = 21n(_ -3-) + ln(_)

- 2 arctan(z) + _r/2 z/L < 0 (23)

32



• ,14x 2,

q2u(z/L) = 21n(_) z/L<O (24)

where

x = (1 - 15z/L) 1/4. (25)

In the case of a local drag coefficient, a polynomial approximation to the

above stability functions was used for computational efficiency.
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